Improved Tomographic Estimates by Specialized Neural Networks
نویسندگان
چکیده
Characterization of quantum objects, being them states, processes, or measurements, complemented by previous knowledge about is a valuable approach, especially as it leads to routine procedures for real-life components. To this end, Machine Learning algorithms have demonstrated successfully operate in presence noise, estimating specific physical parameters. Here we show that neural network (NN) can improve the tomographic estimate parameters including convolutional stage. We applied our technique process tomography characterization several channels. demonstrate stable and reliable operation achievable training only with simulated data. The obtained results viability approach an effective tool based on completely new paradigm employment NNs operating classical data produced systems.
منابع مشابه
Aircraft Visual Identification by Neural Networks
In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...
متن کاملCOCOMO Estimates Using Neural Networks
Software cost estimation is an important phase in software development. It predicts the amount of effort and development time required to build a software system. It is one of the most critical tasks and an accurate estimate provides a strong base to the development procedure. In this paper, the most widely used software cost estimation model, the Constructive Cost Model (COCOMO) is discussed. ...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Estimates on compressed neural networks regression
When the neural element number n of neural networks is larger than the sample size m, the overfitting problem arises since there are more parameters than actual data (more variable than constraints). In order to overcome the overfitting problem, we propose to reduce the number of neural elements by using compressed projection A which does not need to satisfy the condition of Restricted Isometri...
متن کاملImproved Stability Estimates for Impulsive Delay Reaction-diffusion Cohen-grossberg Neural Networks via Hardy-poincaré Inequality
An impulsive Cohen-Grossberg neural network with time-varying and S-type distributed delays and reaction-diffusion terms is considered. By using Hardy-Poincaré inequality instead of Hardy-Sobolev inequality or just the nonpositivity of the reaction-diffusion operators, under suitable conditions in terms of M-matrices which involve the reaction-diffusion coefficients and the dimension and size o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced quantum technologies
سال: 2023
ISSN: ['2511-9044']
DOI: https://doi.org/10.1002/qute.202300027